Yo Protocol
Security Audit

Report Version 1.1

January 21,2025

Conducted by Hunter Security



Yo Protocol Security Audit January 21, 2025

Table of Contents
1 About Hunter Security 3
2 Disclaimer 3
3 Risk classification 3
3.1 Impact. . . . L e e e e e e e e e e e e 3
3.2 Likelihood . . . . . . . . e 3
3.3 Actionsrequired by severitylevel . . ... ... ... ... ... . . oo 3
4 Executive summary 4
5 Findings 5
5.1 LOW . e e e e e e e e e e e e 5
5.1.1 Total pending assets not accountingforfees . . . ... ............. 5
5.1.2 Incorrectly handling the case where fee recipientisnotset . . . ... ... .. 5
5.1.3 Arbitrage opportunity if underlying balance updateisdelayed . . ... .. .. 5

5.1.4 requestRedeem does not support approvals required by EIP4626 . . . . . .. 6
5.1.5 Users not able to cancel their withdrawal requests by themselves . . . . . .. 6
52 Informational . . . . . . . . e 6
5.2.1 Typographical mistakes, non-critical issues or centralization vulnerabilities . . 6




Yo Protocol Security Audit January 21, 2025

1 About Hunter Security

Hunter Security is an industry-leading smart contract security company. Having conducted over 100
security audits protecting over $1B of TVL, our team delivers top-notch security services to the best
DeFi protocols. For security audit inquiries, you can reach out on Telegram or Twitter at @georgehntyr.

2 Disclaimer

Audits are a time-, resource-, and expertise-bound effort where trained experts evaluate smart con-
tracts using a combination of automated and manual techniques to identify as many vulnerabilities
as possible. Audits can reveal the presence of vulnerabilities, but cannot guarantee their absence.

3 Risk classification

Severity Impact: High Impact: Medium Impact: Low
Likelihood: High High High Medium
Likelihood: Medium High Medium Low
Likelihood: Low Medium Low Low

3.1 Impact

+ High - leads to a significant loss of assets in the protocol or significantly harms a group of users.
« Medium - involves a small loss of funds or affects a core functionality of the protocol.
+ Low - encompasses any unexpected behavior that is non-critical.

3.2 Likelihood

+ High - a direct attack vector; the cost is relatively low compared to the potential loss of funds.
« Medium - only a conditionally incentivized attack vector, with a moderate likelihood.
+ Low - involves too many or unlikely assumptions; offers little to no incentive.

3.3 Actions required by severity level

+ High - client must fix the issue.
« Medium - client should fix the issue.
+ Low - client could fix the issue.



https://t.me/georgehntr
https://twitter.com/georgehntr
https://twitter.com/georgehntr

Yo Protocol Security Audit

January 21,2025

4 Executive summary

Overview

Project Name

Yo Protocol

Repository

https://github.com/yoprotocol/core

Commit hash

16d83ac2c602fc80e3e6a712b05aade4686228f5

Resolution

46d46e74ad99f905911460d5fd515a9f08¢13252

Methods

Manual review & testing

Scope

src/yoVault.sol

src/AuthUpgradable.sol

src/Escrow.sol

Issues Found

High risk

Medium risk

Low risk

o0 |O | O

Informational




Yo Protocol Security Audit January 21, 2025

5 Findings
5.1 Low

5.1.1 Total pending assets not accounting for fees
Severity: Low
Files: src/yoVault.sol

Description: Consider the following scenario:
1. Let’s say _getAvailableBalance is currently 105 ETH.
We requestRedeem for shares with a value of 110 ETH (including fees).
Let’s say the fee is 10%.
110*10/110=10 ETH fee, therefore 100 ETH net assets.
(105> 110) == false, therefore we move to pending redeems.
totalPendingAssets += 100.
7. _getAvailableBalance is now equal to 5 ETH (105 - 100).
There were only 105 ETH available, we requested a redeem for 110 ETH which moved to pending, but
5 ETH remained as available. Now other users have the opportunity to withdraw up to 5 ETH even
though they should be next on the queue.

oA wWN

Recommendation: Consider increasing totalPendingAssets in requestRedeem (and then decreasing
in cancelRedeem and fulfillRedeem) by assetsWithFee instead of just assets.

Resolution: Resolved.

5.1.2 Incorrectly handling the case where fee recipient is not set
Severity: Low
Files: src/yoVault.sol

Description: The code comments state that no fee should be taken if the feeRecipient is address(0),
yet the smart contract does not implement this check.

Recommendation: Consider refactoring the fee logic to not take fee when no feeRecipient is set.

Resolution: Resolved.

5.1.3 Arbitrage opportunity if underlying balance update is delayed
Severity: Low
Files: src/yoVault.sol

Description: If there happens to be a time window/gap between funds leaving the yoVault’s balance
and the oracle updating the aggregatedUnderlyingBalances, an adversary may exploit the temporary
incorrect value of totalAssets() so that they either withdraw more assets than usual or receive more
shares upon deposit due to the flawed ratio.

Recommendation: Consider ensuring that the aggregatedUnderlyingBalances is always updated
within the same transaction when funds are leaving the vault’s balance.

Resolution: Acknowledged.




Yo Protocol Security Audit January 21, 2025

5.1.4 requestRedeem does not support approvals required by EIP4626
Severity: Low
Files: src/yoVault.sol

Description: EIP4626 states the following about redeem and withdraw: “MUST support a redeem
flow where the shares are burned from owner directly where msg.sender has EIP-20 approval over
the shares of owner”. However, this flow is not implemented in the yoVault.

Recommendation: Consider allowing users to request redeeming shares for others if approval has
been granted in order to comply with the EIP requirements.

Resolution: Acknowledged.

5.1.5 Users not able to cancel their withdrawal requests by themselves
Severity: Low
Files: src/yoVault.sol

Description: Users should be able to cancel their own redeems if a long time has passed and their
request has not been fulfilled yet as the price-per-share may have significantly changed so that they
no longer intend to redeem their shares at the initially requested ratio. They might as well prefer to
sell or exchange them on a secondary market if there is a delay in fulfilling their request.

Recommendation: Consider either allowing users to cancel their own redeem requests or introduc-
ing a deadline parameter or refactoring the logic so that the assets:shares ratio is calculated upon
fulfilling the request rather than upon creation.

Resolution: Acknowledged.

5.2 Informational

5.2.1 Typographical mistakes, non-critical issues or centralization vulnerabilities
Severity: Informational
Files: src/yoVault.sol

Description: The contracts contain one or more typographical mistakes, non-critical issues or cen-
tralization vulnerabilities. In an effort to keep the report size reasonable, we enumerate these below:

1. Users shouldn’t be able to pass address(0) as a receiver in requestRedeem.

2. The msg.sender is passed to _withdraw in requestRedeem instead of the receiver.

3. Misleading comment in cancelRedeem stating that shares are returned to the owner while they
are sent to the receiver.

4. updateWithdrawFee, updateDepositFee, and updateMaxPercentageChange should use <=.

5. maxDeposit and maxMint must return 0 when the protocol is paused as per EIP4626.

6. The concept of having a request Id appears to be unnecessary as it always has a value of 0.

Recommendation: Consider fixing the above typographical mistakes, non-critical issues or central-
ization vulnerabilities.

Resolution: Partially resolved (only pt. 2).




	About Hunter Security
	Disclaimer
	Risk classification
	Impact
	Likelihood
	Actions required by severity level

	Executive summary
	Findings
	Low
	Total pending assets not accounting for fees
	Incorrectly handling the case where fee recipient is not set
	Arbitrage opportunity if underlying balance update is delayed
	requestRedeem does not support approvals required by EIP4626
	Users not able to cancel their withdrawal requests by themselves

	Informational
	Typographical mistakes, non-critical issues or centralization vulnerabilities



